

Home

Search Collections Journals About Contact us My IOPscience

Comment on 'Microscopic structural evolution during the liquid–liquid transition in triphenyl phosphite' by R Kurita, Y Shinohara, Y Amemiya and H Tanaka J. Phys.: Condens. Matter 19 (2007) 152101

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2007 J. Phys.: Condens. Matter 19 408001 (http://iopscience.iop.org/0953-8984/19/40/408001)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 29/05/2010 at 06:11

Please note that terms and conditions apply.

J. Phys.: Condens. Matter 19 (2007) 408001 (2pp)

COMMENT

Comment on 'Microscopic structural evolution during the liquid–liquid transition in triphenyl phosphite' by R Kurita, Y Shinohara, Y Amemiya and H Tanaka J. Phys.: Condens. Matter 19 (2007) 152101

C J Benmore^{1,2}, Q Mei², J E Siewenie² and J L Yarger³

¹ X-ray Science Division, Argonne National Laboratory, Argonne, IL 60439, USA
² Intense Pulsed Neutron Source Divisions, Argonne National Laboratory, Argonne, IL 60439,

³ Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287-1604, USA

Received 7 June 2007, in final form 31 August 2007 Published 21 September 2007 Online at stacks.iop.org/JPhysCM/19/408001

Abstract

In the communication by Kurita *et al* 2007 *J. Phys.: Condens. Matter* **19** 152101, peaks in the liquid diffraction pattern of triphenyl phosphite have been attributed to intermolecular phosphor–phosphor distances. Based on our previous neutron and x-ray diffraction studies we argue that this assignment is incorrect and the peak contributions are likely to be much more complex.

In the communication by Kurita et al a new peak in the x-ray diffraction pattern is shown to appear and grow in the molecular liquid triphenyl phosphite (TPP) at 215 K over a time period of 300 min. The new peak (B) at a momentum transfer value of $q = 1.12 \text{ Å}^{-1}$ together with an existing peak (A) at 0.84 \AA^{-1} in the function have both been fit with Lorentzian functions and associated with intermolecular phosphor-phosphor distances. Peak A is assigned to 'liquid I' and peak B with a different 'liquid II' structure. We argue that this crystallographic type of analysis and peak assignment of liquid diffraction patterns is far too simplistic to be valid, especially for a complex molecule with many possible conformations. There are ten partial structure factors contributing to the total measured x-ray intensity I(q) for TPP (see equation (1) in [1]) and the Faber–Ziman [2] phosphor–phosphor weighting factor contributes only $\sim 1\%$ of the x-ray signal (see table 1 in [1]). We note that the carbon–carbon weighting factor is the most prominent in the x-ray signal at 44% followed by oxygen–carbon at $\sim 20\%$ (calculated at $q = 0 \text{ Å}^{-1}$ with atomic form factors). Since the P atom is at the center of the molecule in TPP, if the average P-P distance shortened from 7.5 to 5.6 Å with time the diffraction pattern would alter significantly due to the intermolecular changes (and probably intramolecular changes) from carbon and other correlations in addition to smaller changes due to P-P interactions. Based on our previously published reverse Monte Carlo analysis on the

USA

supercooled and liquid forms of TPP [3] we suggest that the $q = 0.84 \text{ Å}^{-1}$ peak is most likely dominated by P–O and O–O correlations, and the $q = 1.12 \text{ Å}^{-1}$ has so many contributions of a similar magnitude that it is impossible to assign changes to any individual interaction. This also calls into question the validity of Kurita *et al*'s subsequent approximate density analysis based on the P–P peak assignment.

Acknowledgments

This work at Argonne is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, contract number DE-AC02-06CH11357. JLY would like to thank the National Science Foundation and the Department of Energy for funding in support of this work.

References

- [1] Mei Q, Ghalsasi P, Benmore C J and Yarger J L 2004 J. Phys. Chem. B 108 20076
- [2] Faber T E and Ziman J M 1964 Phil. Mag. 11 153
- [3] Mei Q, Siewenie J E, Benmore C J, Ghalsasi P and Yarger J L 2006 J. Phys. Chem. B 110 9747